Seagrass meadows are among the world's most productive ecosystems, and as in many other systems, genetic diversity is correlated with increased production. However, only a small fraction of seagrass production is directly consumed, and instead much of the secondary production is fueled by the detrital food web. Here, we study how plant genotype influences detrital consumption. We used three common mesograzers—an amphipod, Ampithoe lacertosa, an isopod, Idotea resecata, and a polychaete, Platyner...
Show moreIn this project, we examined the effect of eelgrass genetic and invertebrate species diversity on detrital consumption and animal survival rates in a series of laboratory experiments. This dataset contains chemical traits for individual eelgrass clones and feeding rates for each grazer type (isopods, amphipods, polychaetes).
Abstract:
Seagrass meadows are among the world's most productive ecosystems, and as in many other systems, genetic diversity is correlated with increased production. However, only a small fraction of seagrass production is directly consumed, and instead much of the secondary production is fueled by the detrital food web. Here, we study how plant genotype influences detrital consumption. We used three common mesograzers—an amphipod, Ampithoe lacertosa, an isopod, Idotea resecata, and a polychaete, Platynereis bicanaliculata. Each grazer consumed eelgrass detritus at rates greater than live eelgrass or macroalgae. This detrital consumption, however, was not spread evenly over leaves shed from different eelgrass clones. Palatability and consumption varied because of genotype specific differences in leaf texture, secondary metabolites (phenolics), and nutritional quality (nitrogen). Further, detritus derived from some eelgrass genotypes was palatable to all grazers, while detritus from other genotypes was preferentially consumed by only one grazer species.
These data are illustrated in figures 2 and 3 of the manuscript:
Reynolds LK, KM Chan, E Huynh, SL Williams, and JJ Stachowicz (in press) Plant genotype indentity and diversity interact with mesograzer species diversity to influence detrital consumption in eelgrass meadows. DOI:10.1111/oik.04471
Stachowicz, J., Grosberg, R., Williams, S. (2017) Feeding trials: Effects of diversity in feeding trials, conducted at Bodgea Marine Laboratory, using detritus from eelgrass (Zostera marina) genotypes (clones) as a food source and either one or a combination of invertebrate grazers. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2017-09-15 [if applicable, indicate subset used]. doi:10.1575/1912/bco-dmo.714942.1 [access date]
Terms of Use
This dataset is licensed under Creative Commons Attribution 4.0.
If you wish to use this dataset, it is highly recommended that you contact the original principal investigators (PI). Should the relevant PI be unavailable, please contact BCO-DMO (info@bco-dmo.org) for additional guidance. For general guidance please see the BCO-DMO Terms of Use document.