Dataset: Fauna species count data from minnow trap sampling within seagrass in Summer 2017 in Back Sound, North Carolina

Final no updates expectedDOI: 10.1575/1912/bco-dmo.780027.1Version 1 (2019-11-06)Dataset Type:Other Field Results

Principal Investigator: F. Joel Fodrie (University of North Carolina at Chapel Hill)

Contact: Amy Yarnall (University of North Carolina at Chapel Hill)

BCO-DMO Data Manager: Amber D. York (Woods Hole Oceanographic Institution)


Project: Collaborative Research: Habitat fragmentation effects on fish diversity at landscape scales: experimental tests of multiple mechanisms (Habitat Fragmentation)


Abstract

Fauna species count data from minnow trap sampling within seagrass in Summer 2017 in Back Sound, North Carolina.

XXX

Views

XX

Downloads

X

Citations

Fauna species count data from minnow trap sampling within seagrass in Summer 2017 in Back Sound, North Carolina.


Related Datasets

No Related Datasets

Related Publications

Methods

Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. doi:10.1146/annurev.ecolsys.34.011802.132419
Methods

Mahoney, R. D., Kenworthy, M. D., Geyer, J. K., Hovel, K. A., & Joel Fodrie, F. (2018). Distribution and relative predation risk of nekton reveal complex edge effects within temperate seagrass habitat. Journal of Experimental Marine Biology and Ecology, 503, 52–59. doi:10.1016/j.jembe.2018.02.004
Methods

Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation Biology, Sinauer, Sunderland, MA pp 237–256. https://www.fws.gov/southwest/es/documents/r2es/litcited/lpc_2012/wilcove_et_al_1986.pdf
Methods

Yeager, L. A., Keller, D. A., Burns, T. R., Pool, A. S., & Fodrie, F. J. (2016). Threshold effects of habitat fragmentation on fish diversity at landscapes scales. Ecology, 97(8), 2157–2166. doi:10.1002/ecy.1449
Software

R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org