Clean seawater samples were collected using a GEOTRACES CTD referred to as GT-C/12L GoFlo, and also from the Super-GeoFISH towed surface vehicle. For more information, see the cruise report.
Water samples were filtered through pre-cleaned, 0.2 µm Pall Acropak Supor filter capsules as described elsewhere (e.g., Cutter et al., 2014; Hatta et al., 2015). Filtered water was collected in 125 mL HDPE bottles (Nalgene) that had been precleaned by soaking in hot 1.2 M HCl (reagent grade) for at least 8 h with subsequent thorough rinsing with ultrapure distilled deionized water (Barnstead E-pure).
Dissolved Ga was determined by isotope dilution ICP-MS using a ThermoFisher Element XR operated in low resolution. Samples (20-30 mL) were concentrated using a SeaFAST system; a dilute HF rinse was used for column cleaning between samples. An enriched isotope spike of known concentration was prepared using purified enriched 71Ga (99.8%), obtained from Oak Ridge National Laboratories. The substantial sample pre-concentration of this method allows for ICP-MS analysis using medium resolution which eliminates isobaric interferences including doubly charged 138Ba with 69Ga.
The reagent blank contribution to the dissolved Ga analysis is typically 0.6 pmol/kg and the detection limit (based on 3 times the standard deviation of the blank) is 0.3 pmol/kg. Repeated runs of US GEOTRACES intercalibration samples (GS and GD), in-house reference solutions, and cast overlap samples suggest a precision of ± 4%; the limit of detection for Ga was 1.5 pmol/kg. Recovery of the method, as determined by repeated analysis of a spiked and unspiked seawater sample was 100 ± 7%. See Table 1 Supplemental File for data.
Dissolved Ba was measured using a ThermoFisher Element XR Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and the isotope dilution method as described by Jacquet et al. (2005). Aliquots (50 μL) of each sample were spiked with 25 μL of a 135Ba-enriched solution (~170 nM) and then diluted 30-fold with 0.2 μm ultrapure filtered water. A sample of ~93% enriched 135Ba was obtained from Oak Ridge National Laboratories for use as the enriched isotope spike. The ICP-MS was operated in low resolution and both 135Ba and 138Ba were determined. The samples were bracketed every 10 samples with a blank and the spike 135Ba solution. The volumes of the spikes, samples and dilution water were accurately assessed by calibrating each pipette by weight. The reproducibility error of this method was estimated by comparing samples collected at the same depths on different casts at the same station. For 12 pairs of these replicate samples, the average absolute deviation of 0.7 nmol/kg or typically 1.5%. Repeated runs of runs of US GEOTRACES intercalibration samples and in-house reference solutions suggest a similar precision; the limit of detection for barium was 0.7 nmol/kg. Our precision is similar to that reported by other labs for Ba (e.g., Jacquet et al., 2005). See Table 1 Supplemental File for data.
Dissolved Ni, Cu, Cd, Pb, and Mn were determined using 14 mL of sample that was spiked with a mixture of isotopically-enriched Ni-62, Cu-65, Cd-111, and Pb-207 (Oak Ridge Nat’l. Labs). Each spike was >90% enriched in the listed isotopes. The sample/spike ratio was chosen so as to have the analytical isotope ratios approximately the geometric mean of the natural and enriched spike isotope ratios. Samples were then extracted/pre-concentrated using a SeaFAST system (Elemental Scientific, Inc.) operated in offline mode. A 10-mL sample loop was employed and the elution volume was 750 µL. A similar online SeaFAST extraction procedure is described by Hathorne et al. (2012) for rare earth elements. The extracted samples were subsequently analyzed using a Thermo-Fisher high resolution ICP-MS with an Apex-FAST high efficiency sample introduction system with Spiro desolvator (Elemental Scientific, Inc.). All elements were determined in medium resolution, except Cd which was determined in low resolution. For Mn-55, the Ni and Cu spikes served as internal standards. Calibration was checked by analysis of a large-volume composite North Atlantic surface seawater sample. Spiked (with a natural isotopic abundance elemental spike) and unspiked aliquots of this sample were analyzed twice in each analytical run. Mo-98 was monitored to correct for MoO+ interference on Cd isotopes.
Dissolved Nd was determined in a separate seaFAST extraction, but with essentially the same methodology as the transition metals. The samples were spiked with isotopically-enriched Nd-145. Nd was determined in low resolution. See related dataset "GP15 Dissolved Rare Earth Elements Leg 1" (https://www.bco-dmo.org/dataset/932161) for the Nd data.
The reproducibility error of this method was estimated by comparing samples collected at the same depths on different casts at the same station as well as by repeated measurement of GEOTRACES reference waters and an in-house standard. Recovery of the method was determined by repeated analysis of a spiked and unspiked seawater. The recoveries, precisions, and comparisons to reference waters are shown in Table 1 Supplemental File for the dissolved concentration data.