(Extracted from the NSF Award abstract)
Temperature influences organismal physiology, behavior, community interactions, and ecosystem function; yet rarely are the mechanisms understood. Accurately predicting the consequences of temperature for a species requires knowledge of: local climatic conditions, the relationship between climate and organismal body temperature, and the physiological and ecological consequences of body temperature. Few studies to date have explored all three areas concurrently. This project will examine in detail the biophysical, physiological, and ecological effects of temperature on a rocky intertidal community, a marine ecosystem that has emerged as a model system for studying the ecological consequences of temperature. It will focus on three major species, representative of rocky marine shore species worldwide: the barnacle, Balanus glandula, its predator Nucella ostrina, and the rockweed Fucus gardneri, which provides shelter for both species. The research is centered around three major goals: to develop biophysical models to explicitly link local climate to organismal body temperatures; to develop energy budget models to relate organismal body temperature to individual performance; and to identify the effect of temperature on interactions among the three species through a series of laboratory and field experiments. This research will provide a model system for understanding the effects of temperature on both individual performance and species interactions. It represents a significant contribution to understanding basic ecological questions, such as the role of temperature in structuring communities, and will also contribute to a more mechanistic understanding of the ecological consequences of future climate changes.
Lead Principal Investigator: Emily Carrington
University of Washington (FHL)
Contact: Emily Carrington
University of Washington (FHL)