NSF Award Abstract:
Every cubic centimeter of oceanic water is home to millions of single celled organisms that are the engines of the majority of biological activity in the ocean. These organisms form functional communities that are key to our understanding of how the ocean benefits us through providing ecosystem services and hinders us through disease and harmful algal blooms. The underlying causes that shape the distribution and activity of organisms remain elusive, resulting in impaired predictive ability. This project will bring oceanographic research into the post-genomic era by joining genomics and transciptomics with state of the art tools in proteomics, metabolomics and trace metal analyses to understand the causes for observed biogeography and biological activity. The project is a multi-faceted study of the structure and function of microbial communities along a transect in the Northeast Pacific that crosses an oceanographic "hotspot" that results from the mixing of high nutrient low chlorophyll waters with coastal iron rich waters.
This project is appropriate as an EAGER award due to the high risk associated with combining numerous cutting edge techniques carried out by a highly multidisciplinary team for the first time. The team includes individuals in the geochemistry community that are accustomed to viewing the end result of biological activity on a large spatial and time integrated scale, and molecular ecologists who interrogate organisms and communities for their evolutionary roots, metabolic capabilities and physiological status. The project is a test bed for an integrated study that includes a complete set of "omics" data along with cell quotas for trace metals. The project will generate a large data set that will be shared with the broader community as well as analyzed by the PIs. Cells in the environment carry out their metabolic processes in the context of a chemical environment. By interrogating cellular functions in the form of the proteome, metabolome and metallome, the investigators are asking the cells to tell us what they sense in the environment and how they respond to what they are sensing. These findings will represent a major step toward redefining how we do oceanography such that a complete understanding of microbial communities can lead us to predictions of how the ocean will respond to ongoing change.
This project follows on an ocean carbon and biogeochemistry workshop that discussed how molecular ecologists might collaborate with geochemists to better understand biogeochemical processes in the world oceans. It is expected that successful completion of this proof of concept cruise will lead to larger interdisciplinary program with the ongoing U.S. Geotraces program. This particular project will demonstrate how using -omics approaches, in conjunction with metagenomic and geochemical sampling, can provide the key to linking structure with function across ocean biomes. As part of this project there will be training for the next generation of oceanographers to work in a multidisciplinary community. Undergraduate students will participate on the cruise and will be entrained in research projects using the data generated. A large data set will be made available to the entire oceanographic community, so that participation will be considerably larger than the small group of investigators participating in the cruise.
Dataset | Latest Version Date | Current State |
---|---|---|
Cellular trace elements collected on cruise TN280 (GeoMICS project) along Line P in the NE Pacific in May 2012 | 2021-02-24 | Final no updates expected |
Trace element concentrations in dissolved and particulate fractions from samples collected by GO-Flo bottles on R/V Thomas G. Thompson cruise TN280 along Line P in the NE Pacific in May 2012 (GeoMICS project) | 2016-11-16 | Final no updates expected |
Lead Principal Investigator: Anitra E. Ingalls
University of Washington (UW)
Co-Principal Investigator: Robert Morris
University of Washington (UW)
GeoMICS [GeoMICS]
Data Management Plan covering GeoMICS awards OCE-1205232, OCE-1205233 (38.64 KB)
08/17/2016