Project: Activity and abundance of photoheterotrophs fueled by photochemically-produced substrates

Acronym/Short Name:PAPI: Photochemistry and Photoheterotroph Interactions
Project Duration:2011-01 - 2014-12
Geolocation:Delaware Estuary

Description

Intellectual Merit: Bacteria that use both dissolved organic material (DOM) and light, i.e. photoheterotrophs, would fundamentally change views of how energy and material are processed in the oceans. However, it is still not clear if these microbes have unique roles in the oceans because standard experiments have not been successful in consistently demonstrating positive effects of light on growth and respiration of presumed photoheterotrophs. It is known that these microbes are abundant, with one type (those containing proteorhodopsin) alone constituting 50% or more of all microbes in the oceans. But why these microbes are so abundant is unknown as the ecological advantages of photoheterotrophy remain obscure.

The PIs will use a new approach and novel experiments to examine how light affects photoheterotrophs and to explore the contribution of these microbes to DOM fluxes. Their work is testing the following hypothesis: The biogeochemical role of photoheterotrophs is to use low energy-yielding DOM components such as products of photochemical reactions. The reactions involve chromophoric DOM (CDOM) which is a large and dynamic part of the carbon cycle especially in coastal oceans. They have hypothesized that the light energy gained by photoheterotrophs would enable these microbes to benefit from using photochemically-produced compounds which alone do not yield much energy. This hypothesis is supported by lab experiments showing that proteorhodopsin-generated energy becomes important only when respiration is inhibited and cells are limited by energy. Other lab experiments demonstrated that anaplerotic fixation of CO2 by PR-containing bacteria is stimulated by light. This fixation is needed for growth on C1-C4 compounds, including many produced by photochemical reactions.

The PIs are testing this hypothesis with experiments in the Delaware estuary where CDOM varies greatly spatially and seasonally. They are examining the effect of light (PAR) on the uptake and respiration of photochemically-produced low molecular weight (LMW) organic compounds and on gene expression (mRNA) of photoheterotrophs. The focus is on CO, pyruvate, acetaldehyde, and glyoxal; together these compounds constitute a large fraction of the photochemical-byproducts in seawater. Glycolate is also being examined because of its importance in phytoplankton excretion and because of its similarity to organic acids produced by photochemical reactions. Uptake of these compounds is estimated with 14C- tracers and HPLC measurements of concentrations. Rates are then compared with the abundance and mRNA levels of proteorhodopsin and pufM found in aerobic anoxygenic phototrophic bacteria as measured by QPCR assays. The PIs are also examining how light and the photochemically-produced LMW organic compounds affect bacterial respiration and growth efficiency. They are examining the relationships among anaplerotic CO2 fixation, uptake of photochemical byproducts, and photoheterotroph abundance and activity along transects of the Delaware estuary and during diel studies.

The proposed work is being conducted by a team consisting of microbial oceanographers (Kirchman and Cottrell) and a marine biogeochemist (Kieber) with expertise in photoheterotrophs and photochemical reactions, respectively.

Broader Impacts: This interdisciplinary project is supporting graduate students and also involves undergraduates in summer research projects. Results will be incorporated into web sites and used in courses taught by Kirchman and Kieber. The Kirchman lab is featured in lab tours open to the public and in Coast Day, an annual open house that attracts about 10,000 visitors. Kieber mentors undergraduates and coordinated a program for economically disadvantaged high school students.



People

Principal Investigator: David J. Kieber
State University of New York College of Environmental Science and Forestry (SUNY ESF)

Principal Investigator: David L. Kirchman
University of Delaware

Co-Principal Investigator: Dr Matthew T Cottrell
University of Delaware

Contact: David J. Kieber
State University of New York College of Environmental Science and Forestry (SUNY ESF)


Data Management Plan

DMP_Kieber_OCE-1029569_OCE-1030306.pdf (16.38 KB)
02/04/2015