Description from NSF award abstract:
Climate change presents a profound challenge to the sustainability of coastal systems. Most research has overlooked the important coupling between human responses to climate effects and the cumulative impacts of these responses on ecosystems. Fisheries are a prime example of this feedback: climate changes cause shifts in species distributions and abundances, and fisheries adapt to these shifts. However, changes in the location and intensity of fishing also have major ecosystem impacts. This project's goal is to understand how climate and fishing interact to affect the long-term sustainability of marine populations and the ecosystem services they support. In addition, the project will explore how to design fisheries management and other institutions that are robust to climate-driven shifts in species distributions. The project focuses on fisheries for summer flounder and hake on the northeast U.S. continental shelf, which target some of the most rapidly shifting species in North America. By focusing on factors affecting the adaptation of fish, fisheries, fishing communities, and management institutions to the impacts of climate change, this project will have direct application to coastal sustainability. The project involves close collaboration with the National Oceanic and Atmospheric Administration, and researchers will conduct regular presentations for and maintain frequent dialogue with the Mid-Atlantic and New England Fisheries Management Councils in charge of the summer flounder and hake fisheries. To enhance undergraduate education, project participants will design a new online laboratory investigation to explore the impacts of climate change on fisheries, complete with visualization tools that allow students to explore inquiry-driven problems and that highlight the benefits of teaching with authentic data. This project is supported as part of the National Science Foundation's Coastal Science, Engineering, and Education for Sustainability program - Coastal SEES.
The project will address three questions:
1) How do the interacting impacts of fishing and climate change affect the persistence, abundance, and distribution of marine fishes?
2) How do fishers and fishing communities adapt to species range shifts and related changes in abundance? and
3) Which institutions create incentives that sustain or maximize the value of natural capital and comprehensive social wealth in the face of rapid climate change?
An interdisciplinary team of scientists will use dynamic range and statistical models with four decades of geo-referenced data on fisheries catch and fish biogeography to determine how fish populations are affected by the cumulative impacts of fishing, climate, and changing species interactions. The group will then use comprehensive information on changes in fisher behavior to understand how fishers respond to changes in species distribution and abundance. Interviews will explore the social, regulatory, and economic factors that shape these strategies. Finally, a bioeconomic model for summer flounder and hake fisheries will examine how spatial distribution of regulatory authority, social feedbacks within human communities, and uncertainty affect society's ability to maintain natural and social capital.
Principal Investigator: Eli Fenichel
Yale University
Principal Investigator: Simon Levin
Princeton University
Principal Investigator: Malin Pinsky
Rutgers University
Co-Principal Investigator: Bonnie McCay
Rutgers University
Co-Principal Investigator: Julia Olson
Northeast Fisheries Science Center - National Marine Fisheries Service (NEFSC-SSB)
Co-Principal Investigator: Kevin St. Martin
Rutgers University
Contact: Malin Pinsky
Rutgers University
Data Management Plan received by BCO-DMO on 05 June 2015. (122.77 KB)
06/05/2015