In this project, investigators participating in the 2015 U.S. GEOTRACES Arctic expedition will measure six oceanic tracers in order to better understand oceanic water movement in the Arctic Ocean. With this information in-hand, it will be much easier for other investigators to interpret their own seawater chemistry data. In common with other national initiatives in the International GEOTRACES Program, the goals of the U.S. Arctic expedition are to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions. Some trace elements are essential to life, others are known biological toxins, and still others are important because they can be used as tracers of a variety of physical, chemical, and biological processes in the sea. The tracers to be measured as part of this study have proven their value for studies of water mass composition, circulation, and mean residence times on short to long time scales. This project will also provide training for two high school teachers, and develop curriculum for high school students.
The Arctic is presently undergoing system-scale environmental change at a pace not seen elsewhere on the globe. Thus, it is essential to establish a baseline of the distributions of trace elements and isotopes (TEIs) for future reference and to begin understanding the processes that determine the TEI distributions in the Arctic Ocean. Particularly with respect to the receding sea ice cover, it is imperative to understand how TEIs impact vital functions of the Arctic system, such as primary productivity or, more generally, the cycling of carbon under these rapidly changing environmental conditions. To further understanding on water movement and thus trace element distributions in the Arctic, this team of researchers will measure chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium, helium isotopes, stable isotopes of water and C-14 along the transect. These tracers have been used successfully in past studies for determination of water mass composition, circulation pathways, and mean residence times on time scales from less than one year (CFCs/SF6 and tritium/He-3) to several hundred years (C-14). The researchers plan to make underway measurements of the saturations of CFCs and SF6 in partially and totally ice covered waters along the cruise track, and will also calculate forward and backward sea ice trajectories at all station locations to determine sources of sea ice samples. These trajectories will be used as a first step towards understanding the pathways of waters in the surface mixed layer.
Dataset | Latest Version Date | Current State |
---|---|---|
Concentrations of CFC-11, CFC-12, CFC-113 and SF6 in seawater from the GEOTRACES-Arctic program, aboard RV/HLY-1502, 2015. | 2016-10-24 | Final no updates expected |
Principal Investigator: Peter Schlosser
Lamont-Doherty Earth Observatory (LDEO)
Co-Principal Investigator: Dr Robert Newton
Lamont-Doherty Earth Observatory (LDEO)
Co-Principal Investigator: William M. Smethie Jr.
Lamont-Doherty Earth Observatory (LDEO)