Extracted from the NSF award abstract:
Marine oxygen deficient zones (ODZs) are waters that are functionally devoid of oxygen. Without oxygen, some microbes are capable of converting nitrogen in the water into N2 gas, which then leaves the ocean and enters the atmosphere. This loss of an important nutrient from the ocean has impacts on phytoplankton growth and marine food webs. While oxygen deficient zones occupy a very small percentage of the ocean, they account for as much as half of the oceanic loss of N as N2. Moreover, the size of these regions is predicted to expand during this century due to climate change. The microbes that are capable of producing N2 gas are extremely diverse, and use several different biochemical pathways to carry out this process. They may occur both free-floating in the water and attached to small particles that are suspended or sinking from the surface waters and providing them a carbon source. However the importance of these two lifestyles (free-living vs particle attached) in terms of contributions to N loss from the oceans is not well understood. This project will identify the major organisms that result in N2 gas production on both suspended and sinking particles, the chemical reactions they carry out, and the rates at which this occurs. This information will be used to improve global climate models to better predict rates of N loss in a future ocean. Elementary and middle school teachers enrolled in a Masters in Science for Science Teachers program will be involved in the project and the graduate students and post-doctoral researchers supported by the project will have opportunities to participate in their classrooms. Underserved populations will also be integrated into the research at the undergraduate and middle school level through a series of summer internships.
ODZs have very complex elemental cycles, implying great microbial diversity. Intertwined with the microbial complexity of ODZ regions is the relatively unexplored interplay between free-living bacteria and those living on either suspended or sinking particles. Determining how these communities and niches interact and relate is one of the most challenging components of ODZ system studies today. Current climate models portray the dynamics of particles in the ODZs and throughout the deep ocean through prescribed functions based on sparse data from the oxic ocean with microbes represented only by the net chemical reactions of the community. However, in reality a phylogenetically and metabolically diverse group of microbes, likely acting in consortia, are responsible for the nitrogen transformations that ultimately result in the production of N2. To explore the processes maintaining the genetic diversity and functional redundancy in N loss processes, four research areas will be integrated: the community phylogenetic diversity (both taxonomic and genomic diversity) the genetic diversity of the proteins that carry out key N transformation processes (as seen through quantitative proteomics), the resulting biogeochemical functions (15N labeled nitrogen transformation rate measurements) and predictions about how this diversity and corresponding function may change in response to climate change (biogeochemical modeling). The approach will be to assay both phylogenetic (16S rRNA tag sequencing) and functional genetic diversity (genomics) on sinking particles collected using large-volume sediment traps. Phylogenetic and genomic studies will be intimately tied to measurements of activity - who is doing key biogeochemical transformations (proteomics) and what are the in situ rates at which they are doing them (using novel incubation systems). Data will then be used to model how diversity and corresponding function change on a range of time and space scales, from the sinking of a single particle to seasonal cycles. To understand the relationship of community diversity and function on suspended and sinking particles, a series of three cruises will be conducted in the Eastern Tropical North Pacific ODZ.
Dataset | Latest Version Date | Current State |
---|---|---|
CTD hydrography and nutrients from casts conducted on R/V Kilo Moana cruises KM1919 and KM1920 from September to October 2019 | 2021-04-20 | Final no updates expected |
CTD bottle data for all CTD casts during R/V Roger Revelle RR1804, RR1805 cruises in the Eastern Tropical North Pacific Ocean, from March to April 2018 | 2019-10-15 | Final no updates expected |
Water temperature, salinity, and other data from CTD taken from the RV Sikuliaq in the Pacific Ocean between San Diego, California and Manzanillo, Mexico from 2016-12-21 to 2017-01-13. | 2018-03-27 |
Principal Investigator: Gabrielle Rocap
University of Washington (UW)
Co-Principal Investigator: Curtis A. Deutsch
University of Washington (UW)
Co-Principal Investigator: Allan Devol
University of Washington (UW)
Co-Principal Investigator: Richard Keil
University of Washington (UW)
Contact: Gabrielle Rocap
University of Washington (UW)
Dimensions of Biodiversity [Dimensions of Biodiversity]
DMP_DEB-1542240_Rocap.pdf (89.83 KB)
11/16/2016