NSF Award Abstract:
The availability of nitrogen in the surface ocean plays a critical role regulating rates of primary productivity in the ocean, and thus through modification of the carbon cycle, nitrogen has the capacity to influence climate. The dominant source of biologically available nitrogen to the ocean is through a process known as di-nitrogen (N2) fixation, which involves the reduction of N2 gas dissolved in seawater to ammonium by microbes referred to as diazotrophs. While significant progress has been made identifying a diversity of marine diazotrophs in recent years using molecular tools, quantifying global rates of N2 fixation, and identifying which ocean basin supports the highest fluxes, has remained a vexing question. This research will quantify rates of N2 fixation as well as its importance for supporting production in the southwest Pacific Ocean. Results from this research will shed light on the sensitivities of N2 fixation (temperature, iron concentrations) as well as the extent of spatial and temporal coupling of nitrogen sources and sinks in the ocean. The work will be carried out by an early career scientist, and involve mentoring of young women, middle school girls and minorities, training of undergraduate and graduate researchers, and international collaborations.
Identifying the spatial distribution of the largest di-nitrogen (N2) fixation fluxes to the ocean remains a critical goal of chemical oceanography. The spatial distribution can inform our understanding of the environmental sensitivities of N2 fixation and the capacity for the dominant marine nitrogen (N) source and sink processes to respond to each other and thus influence the global carbon cycle and climate. In addition to temperature, two factors are at the heart of the current debate over what influences the spatial distribution of N2 fixation in the ocean: 1) the presence of adequate iron to meet the needs of N2 fixing microbes, and, 2) the absolute concentrations as well as ratios of surface ocean nitrate and phosphate concentrations that are low relative to the "Redfield" ratio, which are thought to favor N2 fixing microbes. This project will test the effects of gradients in atmospheric dust deposition on N2 fixation rates when surface waters have relatively constant but favorable nitrate to phosphate concentrations. The work will be carried out in the southwest Pacific, a region highlighted by new modeling work for its unique geochemical characteristics that are expected to favor significant N2 fixation fluxes. Nitrate+nitrite d15N as well as total dissolved nitrogen (TDN) concentration and d15N will be measured in water column samples collected on a French cruise and sediment traps were deployed to capture the sinking particulate N flux. The results will be compared with published work to evaluate which ocean regions support the largest N2 fixation fluxes.
More information:
This project was part of the Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise in the Southwest Pacific between New Caledonia (166°28' E; 22°14' S) and Tahiti (149°36' W; 17°34' S) 0-2000 m
* OUTPACE cruise (doi: http://dx.doi.org/10.17600/15000900)
* OUTPACE website: https://outpace.mio.univ-amu.fr/?lang=en
Dataset | Latest Version Date | Current State |
---|---|---|
Water column nitrate+nitrite d15N and d18O from samples collected during R/V Pelican and R/V F.G. Walton Smith cruises in the Gulf of Mexico and Florida Straits between 2011 and 2018 | 2019-11-21 | Final no updates expected |
Water column nitrate+nitrite d15N and d18O and total dissolved nitrogen d15N measurements from R/V Ka`imikai-O-Kanaloa cruise KOK1806 (HOT LAVA) in July 2018 | 2019-06-18 | Final no updates expected |
Dissolved and sinking particulate organic nitrogen data from a large volume mesocosm experiment in the Noumea Lagoon, New Caledonia, measured from January to February 2013 | 2018-07-10 | Final no updates expected |
Water column nitrate+nitrite d15N measurements from R/V L'Atalante in the southwest Pacific Ocean between New Caledonia and Tahiti from February to March 2015 | 2018-04-11 | Final no updates expected |
Principal Investigator: Angela N. Knapp
Florida State University (FSU - EOAS)
Contact: Angela N. Knapp
Florida State University (FSU - EOAS)
DMP_Knapp_OCE-1537314.pdf (66.81 KB)
08/01/2017