NSF Award Abstract:
Nitrous oxide (N2O) is present at very low concentrations in the atmosphere but is an important greenhouse gas and ozone destroying substance. As with other climate-active gases like methane and carbon dioxide, human activities are responsible for most of its production, either directly through fossil fuel burning or agricultural activities. However, about a third of natural N2O emissions come from the ocean, but even these emissions can be indirectly affected by human activities. About half of the ocean source is derived from three specific geographic regions in the Pacific Ocean and Arabian Sea. These three oceanic regions are places where oxygen concentrations are so low in the intermediate depths that metabolic processes requiring the absence of oxygen are able to occur. These regions are called Oxygen Minimum Zones (OMZs) and they have microbiological processes that occur nowhere else in global ocean waters. In the work proposed here, we will investigate how the microbiological pathways of N2O production and consumption are regulated by environmental conditions such as oxygen and nutrient concentration. This work will involve a research expedition to one of the OMZs, the Eastern Tropical Pacific Ocean off the coast of Mexico. On the cruise, we will perform experiments and collect samples for analysis in our home laboratories at Princeton and Stanford Universities. Advising of graduate students and teaching at the graduate and undergraduate levels at both institutions will be linked to this research. This work is particularly timely because global warming has already indirectly affected the size and geographic extent of the OMZs. Greater expanse of low oxygen water could cause N2O production to increase, leading to increased fluxes of N2O to the atmosphere. In the atmosphere, the role of N2O in ozone destruction and as a greenhouse gas could be critical elements of global change.
Nitrous oxide (N2O) is an important greenhouse gas and ozone destroying substance. About a third of natural N2O emissions come from the ocean, and about half of the ocean source is derived from waters with oxygen deficient intermediate waters (oxygen minimum zones, OMZs). Nitrification is recognized as the main source of N2O in the ocean, but denitrification also likely contributes to the net source in and around OMZs. Because nitrification and denitrification are performed by microbes with very different metabolisms and environmental controls, their contributions to N2O production are expected to differ in response to changes in oxygenation and nutrient inputs. Thus it is important to understand the regulation of N2O production by both processes. The main goal of this project is to quantify the environmental regulation of N2O production and consumption pathways in and around OMZs in order to obtain predictive understanding of N2O distributions and fluxes in the ocean. To do this, production and consumption of N2O will be measured using stable isotope tracer incubations at stations located within and outside one of the major OMZs in the Eastern Tropical North Pacific ocean. The dependence of the rate processes on substrate, product, and oxygen concentrations will be determined, and the composition of the microbial assemblages will be assessed to determine whether different microbial components are involved under different environmental conditions. Natural abundance stable isotope and isotopomer measurements of N2O will be interpreted in concert with measured rates to deduce the sources and pathways (nitrification, nitrifier-denitrification, denitrification, and ?hybrid? formation) involved in N2O production and consumption. This work will also involve a novel application of isotopomer measurements of N2O from incubations to identify the placement of 15N from NH4+ and NO2- within labeled N2O pools.
OMZ regions are the sites of unique nitrogen cycling processes that are critical in determining the fixed nitrogen inventory of the ocean. If OMZs expand as predicted due to anthropogenic changes in the coming decades, changes in these chemical distributions may affect the atmospheric flux of nitrous oxide as well as modify overall ocean productivity via changes in the fixed nitrogen inventory. Understanding the regulation and environmental control of the processes responsible for N2O production and consumption is the foundation of understanding their response to global change.
Dataset | Latest Version Date | Current State |
---|---|---|
Bottle data from CTD casts conducted on R/V Sally Ride cruise SR1805 in the Eastern Tropical North Pacific Ocean from March to April 2018 | 2021-06-18 | Final no updates expected |
Ammonium, total nitrate and nitrite, nitrite, and flow cytometry profiles in the Eastern Tropical North Pacific from March to April 2018 | 2021-04-06 | Final no updates expected |
Natural abundance N2O isotopomers measured from seawater samples collected in the Eastern Tropical North Pacific during R/V Sally Ride (SR1805) cruise from March to April 2018 | 2020-08-02 | Final no updates expected |
Principal Investigator: Karen L. Casciotti
Stanford University
Principal Investigator: Bess B. Ward
Princeton University
Contact: Bess B. Ward
Princeton University
DMP_OCE-1657663_1657868_Ward_Casciotti.pdf (75.56 KB)
07/23/2018