NSF Award Abstract:
The major process controlling the internal cycling of biologically active trace metals in the oceans is through uptake onto and remineralization from sinking particles. Uptake can occur through active biological uptake into living cells as micronutrients, or chemical adsorption onto sinking materials. This latter process is often referred to as scavenging. The relative importance of these processes is often unclear, especially for elements that are both biologically active and also "particle reactive." The latter characteristic is associated with sparing solubility in seawater and the formation of strong complexes with surface sites, with examples such as iron. Recent evidence suggests that the simplistic view of a sinking particle as a passive surface for metal complexation may require some revision. Investigators James Moffett and Seth John propose to study the chemistry of transition metals within large sinking particles and the resultant effects on metal biogeochemical cycling. They will collaborate with a group at the University of Washington, recently funded to study the microbiology and molecular biology of these particles. The central hypothesis of this project is that reducing microbial microenvironments within large particles support high rates of nitrogen and sulfur cycling, greatly enhancing the particles' influence on metal chemistry. The investigators will study these processes in the Eastern Tropical North Pacific Oxygen Minimum Zone (OMZ). This regime was selected because of the wide range of redox conditions in the water column, and strong preliminary evidence that microenvironments within sinking particles have major biogeochemical impacts.
The primary objective is to investigate the interactions of metals with particles containing microenvironments that are more highly reducing than the surrounding waters. Such microenvironments arise when the prevailing terminal electron acceptor (oxygen, or nitrate in oxygen minimum zones) becomes depleted and alternative terminal electron acceptors are utilized. Within reducing microenvironments metal redox state and coordination chemistry are different from the bulk water column, and these microenvironments may dominate metal particle interactions. For example, reduction of sulfate to sulfide could bind metals that form strong sulfide complexes, such as cadmium and zinc, processes previously thought to be confined to sulfidic environments. Reducing microenvironments may account for the production of reduced species such as iron(II), even when their formation is thermodynamically unfavorable in the bulk water column. Tasks include observational characterization of dissolved and particulate trace metals and stable isotopes in the study area, sampling and in situ manipulation of particles using large-dimension sediment traps, shipboard experimental incubations under a range of redox conditions, and modeling, providing insight from microscopic to global scales. The metal chemistry data will be interpreted within a rich context of complimentary data including rates of nitrogen and sulfur cycling, phylogenetics and proteomic characterization of the concentration of key enzymes. Broader impacts include training of a postdoctoral scientist, international collaborations with Mexican scientists, and involvement of undergraduate students in the research.
Dataset | Latest Version Date | Current State |
---|---|---|
Concentrations of dissolved cadmium, nickel, manganese, lanthanum, cerium, praseodymium, and neodymium from the Eastern Tropical North Pacific Ocean on R/V Revelle cruise RR1804-1805 (OMZ Nutrient Cycling project) | 2022-03-25 | Final no updates expected |
Isotopic composition and concentrations of dissolved and particulate nickel, cadmium, iron, zinc, and copper from the Eastern Tropical North Pacific Ocean on R/V Revelle cruise RR1804 and on R/V Sikuliaq cruise SKQ201617S | 2021-02-25 | Final no updates expected |
Iron, manganese and nutrient data from four cruises in the eastern tropical North Pacific, 2012 to 2018 | 2020-11-02 | Final no updates expected |
Iodine speciation measurements aboard R/V Roger Revelle and R/V Falkor in April and June 2018, respectively. | 2019-09-12 | Final no updates expected |
Principal Investigator: James W. Moffett
University of Southern California (USC-WIES)
Co-Principal Investigator: Seth G. John
University of Southern California (USC)
Contact: James W. Moffett
University of Southern California (USC-WIES)
DMP_Moffett_John_OCE-1636332.pdf (67.65 KB)
09/12/2018