NSF Award Abstract:
In this project, investigators participating in the 2015 U.S. GEOTRACES Arctic expedition will make shipboard measurements of dissolved aluminum, iron, and manganese in seawater, ice, snow, and melt pond samples collected during the cruise. In common with other national initiatives in the International GEOTRACES Program, the goals of the U.S. Arctic expedition are to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions. Some trace elements are essential to life, others are known biological toxins, and still others are important because they can be used as tracers of a variety of physical, chemical, and biological processes in the sea. This project will be of particular importance to the success of the overall Arctic expedition because measurements of trace metals in seawater require highly-specialized clean sampling techniques to prevent contamination. Accordingly, the shipboard measurements made by this scientific team will allow for the early detection and rectification of any sample contamination problems while still at sea. In terms of broader impacts, education and training of the next generation of marine trace element scientists, including undergraduate and graduate students, as well as public outreach will be key aspects of this project.
The shipboard determinations of dissolved aluminum, iron, and manganese in this study will provide near real-time insights into the distribution of these parameters, which can be used to potentially modify sampling strategies and can also be used to identify any systemic sampling contamination issues during the GEOTRACES Arctic expedition. Definitive data for dissolved iron and manganese will be produced by shore-based ICP MS, a type of mass spectrometry capable of detecting metals at very low concentrations. However, since dissolved aluminum data cannot be determined by shore-based ICP MS, the shipboard data set collected as part of this project will provide the definitive data set for this key GEOTRACES parameter. In addition, the researchers will undertake high resolution water sampling in the upper 10 m of the water column to characterize the trace metal distribution in this highly stratified region, which cannot be sampled by a conventional rosette. This sampling will be conducted from the edge of ice-floes or a small boat, away from the disturbing effects of the research vessel.
Principal Investigator: Christopher I. Measures
University of Hawai'i (UH)
Co-Principal Investigator: Mariko Hatta
University of Hawaiʻi at Mānoa (SOEST)
Contact: Mariko Hatta
University of Hawaiʻi at Mānoa (SOEST)
DMP_Measures_OCE-1439253.pdf (18.24 KB)
02/28/2019