NSF Award Abstract:
The ocean"s carbon cycle is an important part of Earth's climate system because it impacts the concentration of atmospheric carbon dioxide (CO2), which is a greenhouse gas. However, carbon cycling in the ocean is currently not well understood in part because it is influenced by different complex physical, chemical and biological processes. This complicates quantification of changes in ocean carbon storage such as those between the contemporary ocean and that of the Last Glacial Maximum (LGM, ~21,000 years ago) and hinders mechanistic understanding of the reasons for such changes. Previous studies have suggested several explanations for the lower atmospheric CO2 concentrations during the LGM including, increased sea ice cover, more sluggish deep ocean circulation, cooler temperatures and increased dust-borne iron fluxes that fertilized phytoplankton growth. This project will provide a novel data-constrained quantification of these processes, which will improve our mechanistic understanding of past changes, and may improve understanding of possible future projections. A graduate student will be trained in oceanography, biogeochemical and physical modeling. The project will support underrepresented students through more than 25 afterschool Science Technology Engineering and Mathematics clubs in rural Oregon middle and high schools. This will be achieved by working with teachers to develop and implement a carbon cycle and climate science curriculum into their programs.
This is a project that is jointly funded by the National Science Foundation's Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country.
Modern observations and paleoclimate data provide a wealth of information on changes to the carbon cycle. These data including carbon and nitrogen isotopes from glacial sediments will be used to constrain process-based models of the modern and LGM ocean. A newly developed method will be applied that provides a precise and complete decomposition of dissolved inorganic carbon storage into preformed and biologically-regenerated components. Preformed carbon is further separated into saturation and disequilibrium components, each of which has physical and biological contributions. Perturbation experiments will be used in which one variable (temperature, sea ice, circulation, soluble iron fluxes) is changed at a time and the carbon decomposition is applied. Uncertainties in circulation, mixing, and biogeochemistry will be considered. Protactinium Thorium ratios (Pa/Th) will be implemented in the model and compared with modern and glacial sediment data, which will provide additional constraints on ocean circulation. Effects of ocean circulation changes on the different carbon components will be investigated. The decomposition will be extended to dissolved oxygen and carbon isotopes (d13C). Hypotheses regarding modern and glacial ocean carbon storage will be tested.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NERC Award Abstract:
Data-constrained process-based models of the modern and glacial ocean's carbon cycle will be developed and analyzed using a novel method. The method decomposes Dissolved Inorganic Carbon (DIC = Cpre + Creg) accurately into preformed (Cpre = Csat + Cdis) and regenerated (Creg = Corg + Ccaco3) components, where Csat = Csat,phy + Csat,bio is the equilibrium saturation and Cdis = Cdis,phy + Cdis,bio the disequilibrium, each with physical and biological contributions, and Csoft and Ccaco3 are organic (soft tissue) and calcium carbonate (hard tissue) components. DIC = Cphy + Cbio can thus be separated into physical Cphy = Csat,phy + Cdis,phy and biological Cbio = Csat,bio + Cdis,bio + Csoft + Ccaco3 parts. Perturbation experiments will be used to attribute the change of each component, DIC and atmospheric CO2 to changes in individual variables (circulation, sea ice, temperature, sea level and iron fluxes). Different viable equilibrium states will be produced for the modern and glacial ocean incorporating recent innovations in ocean physics, such as different mixing parameterizations and ventilation diagnostics, and in biogeochemistry, such as variable elemental (C:P) stoichiometry, dissolved iron fluxes, sediment interactions, cycling of Pa/Th, and land carbon changes. This approach will allow quantitative, process-based understanding of glacial-interglacial changes in ocean carbon storage including uncertainty estimates. It will also elucidate the response of carbon components to circulation changes. The decomposition will be extended to carbon isotopes (d13CDIC).
Principal Investigator: Samar Khatiwala
University of Oxford (Oxford)
Principal Investigator: Andreas Schmittner
Oregon State University (OSU-CEOAS)
Contact: Andreas Schmittner
Oregon State University (OSU-CEOAS)
DMP_Schmittner_etal_OCE1924215.pdf (59.17 KB)
06/09/2020