NSF Award Abstract:
Submarine groundwater discharge (SGD) is the flow of water from land through the coastal seafloor into the nearby ocean. Approximately 13,000 cubic kilometers of groundwater is discharged into coastal environments every year, yet the effects of this fresh and often nutrient rich SGD are still poorly understood for coral reefs. This SGD input is driven by changes in precipitation, human land use, sea-level rise, tidal amplitude, and groundwater usage, many of which are rapidly changing with climate and human impacts. This project improves our understanding of SGD effects on coral reefs to better predict how both natural and human-induced changes will affect coastal ecosystem functioning in the future. Working in one of the most comprehensively studied coral reef ecosystems in the Pacific (Mo'orea, French Polynesia, home of the Mo'orea Coral Reef Ecosystem LTER); this project tests the influence of SGD on individual, community, and ecosystem-scale coral reef processes. Using mensurative studies, caging experiments, and a synthetic model, the investigators: 1) characterize SGD gradients and relate it to high resolution coral reef cover data, 2) determine how individual to ecosystem processes are influenced by SGD, and 3) develop a synthetic model to show how changes in SGD fluxes will alter reef ecosystem functioning. As SGD is a common feature on nearshore coral reefs worldwide, the results of this study have global implications for understanding the performance of coral reefs, which are essential economic, cultural, and scientific resources. This project is structured to provide training across multiple career levels, linking 13 undergraduate students, 2 graduate students, 2 senior personnel, 1 postdoctoral researcher, 1 female beginning lead investigator, and 2 senior co-investigators, with a focus on encouraging participation from underrepresented groups (e.g., through the Alaska Native and Native Hawaiian, Asian American and Native American Pacific Islander, and Hispanic-Serving Institutions of California State University Northridge, the University of Hawaiʻi at Mānoa, and California State University Long Beach). The investigators work with local K-12 students and teachers in Mo'orea and collaborate with an artist-in-residence to communicate science to the broader public through interactive and immersive art experiences in Mo'orea, Miami, and Los Angeles.
SGD is a natural and understudied feature of many nearshore coral reef ecosystems, which can contribute substantial changes to marine biogeochemistry, with impacts for coastal organisms such as reef-building corals, macroalgae, and bioeroders. SGD may play a key role in coral reef ecosystem functioning because it alters key physicochemical parameters (e.g., temperature, salinity, and nutrient and carbonate chemistry) that substantially affect both biotic and abiotic processes on coral reefs. This project (i) characterizes the spatial extent and biogeochemical signal of SGD in Mo'orea, French Polynesia, (ii) identifies how SGD influences microbial processes, benthic organism growth rates and physiology, species interactions between corals, macroalgae, and herbivores, and net ecosystem calcification and production rates, and (iii) quantitatively assesses how changes in SGD fluxes will alter reef biogeochemistry and ecosystem functioning through an integrative modelling effort. Specifically, the hydrogeological, biogeochemical, and ecological data collected in this study are synthesized in a Bayesian structural equation model. This project characterizes and quantifies how SGD directly and indirectly affects ecosystem functioning via changes in biogeochemistry and altered individual to ecosystem responses, thereby providing a better capacity to track and predict alterations in reef ecosystem function.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Dataset | Latest Version Date | Current State |
---|---|---|
Data on how nutrient and sediment loading affect coral functionality in a tropical branching coral | 2021-09-17 | Final no updates expected |
Biogeochemistry data from Maunalua Bay, Hawaii measured on four dates between April and October 2015 | 2021-09-15 | Final no updates expected |
Empirical orthogonal functions (EOFs) and benthic communities at Wailupe and Black Point on Oahu, Hawai'i | 2021-09-15 | Final no updates expected |
Principal Investigator: Craig E. Nelson
University of Hawaiʻi at Mānoa
Principal Investigator: Nyssa Silbiger
California State University Northridge (CSUN)
Co-Principal Investigator: Megan Donahue
University of Hawai'i (UH)
Contact: Nyssa Silbiger
California State University Northridge (CSUN)
DMP_OCE-1924281-Silbiger.pdf (517.88 KB)
08/06/2020