NSF Award Abstract:
Human activity has greatly increased the amount of mercury (Hg) in the environment, and particularly in the surface ocean. Most of the Hg enters the ocean from the atmosphere as a gas, on particles, or in precipitation. Complex physical and chemical processes at the interface between the ocean and atmosphere control the amount of Hg that is retained and therefore that can ultimately accumulate in seafood. Methylmercury (MeHg) is a chemical form of Hg that is commonly retained in organisms and impacts the health and development of humans and wildlife. This research will assess concentrations of Hg together with its "methyl" forms in the atmosphere and surface ocean at sea from Alaska to Tahiti. The spatial extent of the cruise will allow comparison of the air-sea exchange and concentrations of mercury in both the North Pacific where human emissions are large and in remote regions with minimal human impact. The researchers will use established techniques and develop new methods to examine the fate and transport of mercury within the surface ocean. These findings will contribute key Hg data to the GEOTRACES program and thus enhance its overall impact as part of an extensive marine trace element study. Findings will have potential to inform public policy and global environmental treaties related to Hg, thus providing data to evaluate human risk from Hg in present and future climate scenarios. Educational impact will include support for a graduate student and their dissertation using the field data, as well as several undergraduates that will gain high level, hands-on research experience.
The research will take advantage of recent analytical advances that enable high resolution determination of the concentrations and forms of inorganic Hg in the surface ocean and atmosphere. The analytical approach will also be expanded to include measurements of methylated Hg compounds, including MeHg and dimethylmercury. These measurements, and ancillary data collected during the GEOTRACES Pacific Meridional Transect cruise, will allow assessment of both atmospheric input and in situ oceanic loss for the dominant forms of inorganic and methylated Hg. Exchange will also be evaluated in the context of the suite of environmental variables collected by collaborators during the cruise. The resulting data will help assess the long-term impact of anthropogenic inputs of Hg to the atmosphere and ocean, and the factors that influence the loss of Hg from the ocean by gas evasion. The studies will build on previous results obtained as part of the GEOTRACES program and other NSF-funded studies, adding novel measurements and building an enhanced understanding of the sources and sinks of Hg to the open ocean.
Principal Investigator: Robert P. Mason
University of Connecticut (UConn)
Contact: Robert P. Mason
University of Connecticut (UConn)
DMP_Mason_OCE1736659.pdf (67.10 KB)
10/14/2020