NSF Award Abstract:
Trace metals like iron and zinc are essential for the growth of the microscopic plants (phytoplankton) that dominate photosynthesis in the sunlit surface ocean. Other trace metals like copper or mercury are highly toxic to these same organisms. Even at concentrations of as low as one gram in a trillion grams of seawater, trace elements can alter the community consumption of carbon dioxide and the production of oxygen by ocean ecosystems. The resulting beneficial and/or toxic response depends on the chemical form of each trace metal. Dissolved in seawater, these metals can exist either as individual, free ions or attached to other dissolved chemical compounds, generically called ligands. Complexation is the process by which trace metals become chemically attached to ligands. This project will study the complexation of six biologically important trace metals with a ligand known as hydrogen sulfide. Data from work done during an expedition in the Pacific Ocean from Alaska to Tahiti will provide new scientific insight on hydrogen sulfide's importance in controlling essential and toxic metal bioavailability in various marine waters and thus have scientific impact on ocean carbon and ecosystem models. A graduate student will play a leading role in the project. Educational opportunities will be greatly enhanced by working alongside other world-class scientists as a participant in a large collaborative program. Additional graduate learning and outreach will include communicating experiences and research findings with the public with a blog and by interactions with undergraduate students as a teaching assistant.
In the oxygenated ocean, hydrogen sulfide is biologically produced in sunlit surface waters and emitted from hydrothermal vents on ocean ridges. It can then complex dissolved trace metals or react with them to form insoluble metal sulfides. In both cases, the abundance and cycling of essential trace elements would be affected and the importance of these reactions are currently not known. These sulfide - trace metal studies will be conducted as part of the 2018 US GEOTRACES Pacific Meridional Transect (PMT), a cruise track that allows sampling of productive coastal waters, low nutrient surface waters, and plumes of metal- and sulfide-rich hydrothermal waters near the bottom. The dissolved ions of hydrogen sulfide will be measured at sea soon after collection. Metal sulfides contained in and on particles will also be filtered and analyzed. This project will address several specific scientific questions. To what degrees does sulfide complexation vary as a function of the various biological and chemical regimes encountered? Are essential metals removed by precipitating with hydrogen sulfide in the upper water column? Does the reaction of metals with hydrogen sulfide in hydrothermal waters stabilize these dissolved complexes and allow long range transport? Related study will develop from close collaborations with other GEOTRACES scientists studying trace metals and their complexation with ligands other that sulfide, providing overall context and novel capacity to fully understand trace element cycles in the ocean.
Principal Investigator: Gregory A. Cutter
Old Dominion University (ODU)
Contact: Gregory A. Cutter
Old Dominion University (ODU)