NSF Award Abstract:
Nitrogen is one of the two major nutrients required universally by plankton in the ocean, and its availability can affect the ocean's ecology, productivity, and carbon cycle. While the cycling of fixed N in the ocean is in one sense emblematic of other nutrient cycles, it is also unique in that its largest input (N fixation) and output (denitrification) are biologically mediated, which renders the ocean N budget susceptible to complex biological feedbacks. It thus provides a platform for asking one of the core questions of global biogeochemical cycles: How is it that the actions of individual organisms and groups conspire with physicochemical conditions to produce a global Earth surface environment that has been continuously habitable for billions of years?
The dominant terms in the oceanic fixed N input/output budget are poorly characterized, and we focus our attention here on N fixation. Developing robust estimates of the global rate and distribution of N fixation from "direct" shipboard measurements of N fixing activity is complicated by the inherent spatial and temporal variability of this biologically mediated flux. Thus, geochemical approaches for estimating N fixation inputs have come to the forefront. Currently, nitrate stable isotope measurements, which could provide an integrative estimate of N fixation on a regional or basin scale, are sparse in the Atlantic, being focused primarily in the Sargasso Sea. The GEOTRACES program provides a platform to put these data into a broader context through the illumination of basin-scale patterns.
In this project researchers from Princeton University, Brown University, and the Woods Hole Oceanographic Institution will measure the d15N of nitrate in seawater and atmospheric samples collected as part of the GEOTRACES North Atlantic Section. Nitrate d15N is a GEOTRACES "core parameter" that will complement other measurements and will by itself provide important constraints on the oceanographic processes, including N fixation, lateral nitrate transport, low latitude N cycling, the effect of the North African upwelling regions on nutrient fluxes across the basin, and the exchange of fixed N with the Mediterranean. In addition to yielding such specific process-related insights, this work will provide one of the first cross-basin views of nitrate isotopes in the interior and will thus help to simply characterize the isotope signals of different interior water masses, including the Mode Waters, Antarctic Intermediate Water, Mediterranean Intermediate Water, Lower and Upper North Atlantic Deep Water, and Antarctic Bottom Water. Finally, the isotopic characterization of atmospheric nitrate deposition will inform our understanding of the N isotope budget and isotopic gradients of the North Atlantic. Combined, these measurements will yield insight into modern biogeochemical processes and will also provide first order background information for both modern physical oceanographic and paleoceanographic applications. As an example of the latter, studies of Atlantic sediments seek to reconstruct past changes in the rate of N fixation, based on the modern finding that N fixation appears to lower the d15N of thermocline nitrate in the Sargasso Sea. Progress in this paleoceanographic work relies on a more complete picture of nitrate d15N in the modern Atlantic.
Broader impacts: The broader impacts of the proposed study include the mentoring of a postdoctoral investigator and the inclusion of undergraduates in state-of-the-art research. The project will also provide a high-quality nitrate isotope data set for the North Atlantic for use by the broader community.
Dataset | Latest Version Date | Current State |
---|---|---|
Nitrate N and O isotopes from the GP12 ("PANDORA") cruise in the South-West Pacific and Solomon Sea from June to August 2012 carried out as part of the international GEOTRACES program | 2021-01-27 | Final no updates expected |
Principal Investigator: Karen L. Casciotti
Stanford University
Principal Investigator: Meredith Hastings
Brown University
Principal Investigator: Daniel M. Sigman
Princeton University
Contact: Daniel M. Sigman
Princeton University
U.S. GEOTRACES [U.S. GEOTRACES]