Goal
The primary objective of this project is to determine how methane seepage from the US Atlantic Margin (USAM) upper continental slope near the up-dip limit of gas hydrate stability affects ocean chemistry and sea-to-air greenhouse gas flux in three-dimensions and how this seepage interacts with oceanographic phenomena (e.g., southwardly flowing currents) to create hypothesized hotspots of decreased pH (i.e., acidification potential). A complementary objective is to collect physical data to constrain the location of the methane seeps, the height of plumes above the seafloor, the intensity of seepage, and the estimated volumetric flow rate of methane. Synthesizing the data required to meet these objectives will elucidate the sources and sinks for seep methane and track the flow of methane carbon through the ocean-atmosphere system once released at the seafloor.
Background
Gas hydrate is known to exist widely within shallow marine sediments where ocean depths exceed ~500m. Gas hydrate that may occur along the landward edge of the zone of gas hydrate occurrence is particularly susceptible to destabilization in response to natural environmental changes, including changes in bottom water temperature. The methane emitted during destabilization can have a range of implications, including the potential transmission of methane to atmosphere, the conversion of methane to carbon dioxide in ocean waters, which may then be transmitted to the atmosphere and contribute to acidification of seawater.
In recent years, surveys of the Atlantic Margin have revealed the presence of numerous, previously-undocumented methane seeps in locations that appear to coincide with the landward edge of hydrate stability. This project will conduct targeted acquisition of field data during a 13-day research cruise from the University-National Oceanographic Laboratory System’s (UNOLS) R/V Hugh R. Sharp to acquire water column samples and complete thorough surveys of sea-to-air greenhouse gas flux and seafloor gas emissions on the upper continental slope between Cape Hatteras and Wilmington Canyons. These data will then be analyzed to address the key questions related to the environmental impact of methane seeping from the margin near the up-dip limit of gas hydrate stability. The project will also continue to develop and refine laboratory procedures to help determine whether sampled methane was derived from recently dissociated gas hydrate or was perhaps generated by another source.
Impact
The resulting data will 1) advance our understanding of the sources, source strengths, and distribution of methane emission from deepwater gas hydrate systems; 2) measure the concentration of methane near the seafloor and in the water column; and 3) assess the vigor of aerobic methane oxidation in ocean waters and the linked change in seawater buffering capacity and acidification along the edge of gas hydrate stability on the U.S. Atlantic Margin. The project will also characterize ocean currents that transport emitted methane and its byproducts southward toward Cape Hatteras, the amount of water column methane carbon derived from gas hydrate dissociation, and the emission intensity of methane derived from gas hydrate to the atmosphere.
Final Report: https://doi.org/10.2172/1634089
Dataset | Latest Version Date | Current State |
---|---|---|
Radiocarbon in methane from waters of the US Atlantic and Pacific margins as collected on R/V Hugh Sharp cruise HRS1713 and R/V Rachel Carson cruise RC0026 in 2017 and 2019 | 2021-09-27 | Final no updates expected |
Principal Investigator: John D. Kessler
University of Rochester
Co-Principal Investigator: Carolyn Ruppel
United States Geological Survey (USGS)