NSF Award Abstract:
Climate change and local-scale anthropogenic stressors are degrading coral reefs across the globe. When conditions become too stressful on reefs, corals can lose beneficial microbial symbionts (e.g., dinoflagellates in the family Symbiodiniaceae) that live in their tissues via a process called “bleaching”. Although Symbiodiniaceae play key roles in the health of coral colonies, we know little about the processes that make symbionts available in the environment to prospective host corals. This research test the extent to which coral-eating fish feces, which contain live Symbiodiniaceae, facilitate symbiont acquisition by corals in their early life stages. It will generate seminal knowledge on how corallivore feces impact coral symbioses and health, and will assess the ecological importance of corallivorous fishes as drivers of coral symbiont assemblages. This research also test the extent to which corallivore feces are a source of food and nutrients that impact coral health; this has particular relevance to the survival and recovery of bleached adult corals. This research can ultimately inform intervention strategies to support reef resilience and mitigate reef degradation. Results from this project will be communicated widely in scientific arenas, in undergraduate education programs, and to the public via multimedia content and outreach. The Houston Independent School District (HISD, Houston, TX) is the nation’s 7th largest public school system. This work will enrich environmental science curricula for underrepresented minority students at under-resourced HISD high schools. This work will also support economically disadvantaged and first-generation undergraduate students in pursuing STEM majors and careers through multi-year research experiences.
Symbioses between foundation species (e.g., corals, sponges, trees) and microbiota (e.g., microeukaryotes, bacteria) underpin the biodiversity, productivity, and stability of ecosystems. Consumers, such as predators and herbivores, shape communities of these foundation species through trophic interactions. For instance, grazers contribute to the maintenance of coral dominance on reefs via consumption of macroalgal competitors. However, the indirect effects of other consumers on foundation species are rarely examined. Few studies have tested how consumers affect microbiota assembly in corals, even though coral symbionts (e.g., dinoflagellates in the family Symbiodiniaceae) play key roles in reef function and persistence. Corallivorous (coral-eating) fishes were recently demonstrated to egest large quantities of live Symbiodiniaceae cells as they swim across reefs. This research is testing the hypothesis that corallivore feces promote coral dominance on reefs by supporting coral acquisition of key symbionts and nutrients. The following research objectives will be accomplished: (1) to quantify the contribution of corallivorous fish feces to coral symbiont acquisition; and (2) to test the extent to which corallivorous fish feces influence coral health and recovery from thermal stress. Reefs are being degraded globally due to climate-change induced bleaching and associated mortality. This project is teasing apart the extent to which nutrients and/or live symbionts associated with corallivore feces contribute to the resilience of bleached corals under ambient and heat stress conditions. The research is tightly integrated with two education objectives: (1) to organize a Research Experience for Teachers (RET) program in which rigorous learning modules that high school teachers can incorporate into their Environmental Systems course offerings are developed and tested; and (2) to provide undergraduate students with a multi-year research experience through a partnership with the Rice Emerging Scholars Program (RESP).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Dataset | Latest Version Date | Current State |
---|---|---|
Bacterial communities and relative abundances of the pathogen Vibrio coralliilyticus in feces of coral reef fish collected on the north shore of Mo’orea, French Polynesia, Oct 2020 | 2024-09-25 | Preliminary and in progress |
Lesion frequencies and sizes after fish feces treatment on coral samples collected on the north shore of Mo’orea, French Polynesia, Oct 2020 to Jun 2021 | 2024-09-24 | Preliminary and in progress |
Lead Principal Investigator: Adrienne M.S. Correa
Rice University
DMP_Correa_OCE-2145472.pdf (99.16 KB)
01/31/2022