Dataset: Series 1B-4: Multiple stressor experiments on T. pseudonana (CCMP1335) – Chlorophyll, particulate organic carbon and particulate organic nitrogen

Final no updates expectedDOI: 10.26008/1912/bco-dmo.829025.1Version 1 (2020-11-12)Dataset Type:experimental

Principal Investigator: Uta Passow (University of California-Santa Barbara)

Co-Principal Investigator: Edward Laws (Louisiana State University College of the Coast and Environment)

Scientist, Contact: Julia Sweet (University of California-Santa Barbara)

BCO-DMO Data Manager: Nancy Copley (Woods Hole Oceanographic Institution)


Project: Collaborative Research: Effects of multiple stressors on Marine Phytoplankton (Stressors on Marine Phytoplankton)


Abstract

Four follow-up experiments on the combined effect of light and temperature changes on the growth rate (mu) and photophysiology of Thalassiosira pseudonana CCMP 1335 were conducted to supplement / repeat series 1A experiments. This was necessary because doubt existed regarding the growth during 1A experiments. 1A experiments were conducted in artificial seawater. 1B experiments were conducted in artificial seawater supplemented with 5% sterilized seawater. The experiments were designed to test th...

Show more

Experimental setup:

The experiments were designed to test the combined effects of four temperatures, and eight light intensities on growth and photophysiology of the diatom T. pseudonana CCMP1335 in a multifactorial design. Four temperatures were tested: 15°C, 18°C, 22°C, and 26°C. Within each temperature, eight light levels were tested: 30, 40, 70,90,105,125,140 and 265 µmol photons · m-2 · s-1. All lights were set at a 12 h day: 12 h dark cycle. For logistical reasons, experiments were partially conducted in series.

Experiments were conducted in Multicultivator MC-1000 OD units (Photon Systems Instruments, Drasov, Czech Republic). Each unit consists of eight 85 ml test-tubes immersed in a thermostated water bath, each independently illuminated by an array of cool white LEDs set at specific intensity and timing. A 0.2µm filtered ambient air was bubbled through sterile artificial seawater, and the humidified air was supplied to each tube  Each experiment was split into two phases: An acclimation phase spanning 3 days, was used to acclimate cultures to their new environment. Pre-acclimated, exponentially-growing cultures were then inoculated into fresh media and incubated through a 4-day experimental phase during which assessments of growth, photophysiology, and nutrient cycling were carried out daily. All sampling started 6 hours into the daily light cycle to minimize the effects of diurnal cycles.

Experiments were conducted with artificial seawater (ASW) prepared using previously described methods (Kester et. al 1967), and enriched with 50mL per liter of UV sterilized natural seawater and nitrate (NO3), phosphate (PO4), silicic acid (Si[OH]4), at levels ensuring that the cultures would remain nutrient-replete over the course of the experiment. Trace metals and vitamins were added as in f/2 (Guillard 1975). The pH of the growth media was measured spectrophotometrically using the m-cresol purple method (Dickson 1993), and adjusted using 0.1N HCl or 0.1M NaOH.

Organic Carbon and Nitrogen concentrations

Samples were filtered onto pre-combusted GF/F filters, dried at 60°C, and stored at room temperature until analyses of particulate organic carbon (POC), and particulate organic nitrogen (PON).  Samples were analyzed using an elemental analyzer (CEC 44OHA; Control Equipment). Samples where C or N concentrations were below instrument detection limits (columns 'C_detection_limit_ug' and 'N_detection_limit_ug') were flagged (column 'Flags').

Chlorophyll

Daily subsamples from each treatment were filtered onto 0.45 µm polycarbonate filters and stored at -20°C. Filters were placed in 90% acetone (v/v) overnight at -20°C, and the extracted chlorophyll was measured fluorometrically on a Turner 700 fluorometer (Strickland 1972). Chlorophyll-a liquid standards in 90% acetone (Turner Designs Inc.), and adjustable solid secondary standards (Turner Designs Inc. P/N 8000-952) were used for calibrations, and to calculate the chlorophyll content of the samples (Column M)


Related Datasets

No Related Datasets

Related Publications

Methods

Clayton, T. D., & Byrne, R. H. (1993). Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Research Part I: Oceanographic Research Papers, 40(10), 2115–2129. doi:10.1016/0967-0637(93)90048-8
Methods

Dickson, A. G. (1993). The measurement of sea water pH. Marine Chemistry, 44(2-4), 131–142. doi:10.1016/0304-4203(93)90198-w
Methods

Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers, 34(10), 1733–1743. doi:10.1016/0198-0149(87)90021-5
Methods

Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication 3, 191 pp
Methods

Fangue, N. A., O’Donnell, M. J., Sewell, M. A., Matson, P. G., MacPherson, A. C., & Hofmann, G. E. (2010). A laboratory-based, experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnology and Oceanography: Methods, 8(8), 441–452. doi:10.4319/lom.2010.8.441