In 2010-2012/13, the OMEGAS consortium is investigating the impact of ocean acidification (OA) on two ecologically important, calcification-dependent marine invertebrates (sea urchins Strongylocentrotus purpuratus and mussels Mytilus californianus) in relation to local-to-coastal variation in carbonate chemistry in the California Current Large Marine Ecosystem (CCLME). An interdisciplinary team of investigators with expertise in physical and chemical oceanography, marine ecology, biochemistry, molecular physiology, and molecular genetics carry out integrated, lab and field, multi-site investigations of the ecological, physiological, and evolutionary responses of sea urchins and mussels to spatial and temporal variation in OA.
The research takes place in the context of a mosaic of variable oceanography, including recently documented latitudinal variation in carbonate chemistry along the upwelling-dominated US west coast. Variation in upwelling regimes from Washington to southern California generates spatial and temporal gradients in concentration of CO2 that shoal to surface waters during upwelling events, extending shoreward into the inner shelf region. Because calcifiers in the upwelling-dominated CCLME probably have historically experienced wide fluctuation in pH, many likely are adapted to a variable carbonate chemistry environment. The new challenge to these organisms is that they may have limited ability to respond to additional increases in CO2. It is this challenge, the mechanistic ability of calcifying invertebrates to acclimate or adapt to increasing CO2 and aragonite saturation states < 1.0, that is addressed in this program.
Our research includes several integrated elements that span our three project areas (Moorings and sensors; Genomics, physiology, and larval rearing; and Field transplants and growth experiments):
(1) Document the oceanographic context in which the study organisms operate in four regions of the CCLME with contrasting upwelling regimes.
(2) Examine physiological, genomic, and genetic mechanisms underlying acclimatization and adaptation to OA conditions with coordinated and integrated studies of adults and larvae of sea urchins and mussels collected from each of two sites within each of the four regions. In common-garden experiments culture sea urchins and mussels, respectively, under different CO2 and temperature regimes, and use genomics techniques to determine the tolerance of larvae to present and future OA conditions.
(3) Determine evolutionary responses and adaptational potential to OA using genetic surveys of urchins and mussels across the 8 sites and relate detected variability to the oceanographic conditions.
(4) Examine ecological responses to OA with transplants of mussels and urchins in the field and monitor growth rates and shell accretion rates in relation to oceanographic and physical conditions.
The team will investigate the impact of ocean acidification (OA) on two ecological important, calcification-dependent marine invertebrates (sea urchins Strongylocentrotus purpuratus and mussels Mytilus californianus) in relation to local-to-coastal variation in carbonate chemistry in the California Current Large Marine Ecosystem (CCLME). An interdisciplinary team of investigators with expertise in physical and chemical oceanography, marine ecology, biochemistry, molecular physiology, and molecular genetics will carry out an integrated, lab and field, multi-site investigation of the ecological, physiological, and evolutionary responses of sea urchins and mussels to spatial and temporal variation in OA. The research will take place in the context of a mosaic of variable oceanography, including recently documented latitudinal variation in carbonate chemistry along the upwelling-dominated US west coast. Variation in upwelling regimes from Washington to southern California generates spatial and temporal gradients in concentration of CO2 that shoal to surface waters during upwelling events, extending shoreward into the inner shelf region. Because calcifiers in the upwelling-dominated CCLME probably have historically experienced wide fluctuation in pH, many likely are adapted to a variable carbonate chemistry environment. The new challenge to these organisms is that they may have limited ability to respond to additional increases in CO2. It is this challenge, the mechanistic ability of calcifying invertebrates to acclimate or adapt to increasing CO2 and decreasing carbonate mineral saturation state, that is addressed in this project.
The OMEGAS Moorings and Sensors team will document the oceanographic context in which the study organisms operate in four regions of the CCLME with contrasting upwelling regimesThis project also coordinates closely with other OMEGAS projects [(i) Genetics, physiology, larval rearing and (ii) Field transplants] to achieve goals of the project to determine acclimatization and adaptational capacity to present and future OA conditions .
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Gaylord, B., T. M. Hill, E. Sanford, E. A. Lenz, L. A. Jacobs, K. N. Sato, A. D. Russell, and A. Hettinger. "Functional impacts of ocean acidification in an ecologically critical foundation species", Journal of Experimental Biology, v.214, 2011, p. 2586.
Howarth, R., F. Chan, D. J. Conley, S. C. Doney, R. Marino, and G. Billen. "Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems", Frontiers in Ecology and the Environment, v.9, 2011, p. 18.
Yu, P. D., P. G. Matson, T. R. Martz, and G. E. Hofmann. "The ocean acidification seascape and its relationship to theperformance of calcifying marine invertebrates: laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH", Journal of Experimental Marine Biology and Ecology, v.400, 2011, p. 288.
Lead Principal Investigator: Francisco Chavez
Monterey Bay Aquarium Research Institute (MBARI)
Lead Principal Investigator: Gretchen E. Hofmann
University of California-Santa Barbara (UCSB-LifeSci)
Lead Principal Investigator: Margaret A. McManus
University of Hawai'i (UH)
Lead Principal Investigator: Bruce A. Menge
Oregon State University (OSU)
Lead Principal Investigator: Stephen R. Palumbi
Stanford University - Hopkins (Stanford-HMS)
Lead Principal Investigator: Peter T. Raimondi
University of California-Santa Cruz (UCSC)
Lead Principal Investigator: Eric Sanford
University of California-Davis BML (UC Davis-BML)
Co-Principal Investigator: Jack Barth
Oregon State University (OSU-CEOAS)
Co-Principal Investigator: Carol A. Blanchette
University of California-Santa Barbara (UCSB-LifeSci)
Co-Principal Investigator: Francis Chan
Oregon State University (OSU)
Co-Principal Investigator: Gernot Frederich
Monterey Bay Aquarium Research Institute (MBARI)
Co-Principal Investigator: Brian Gaylord
University of California-Davis BML (UC Davis-BML)
Co-Principal Investigator: Sally D. Hacker
Oregon State University (OSU)
Co-Principal Investigator: Tessa M. Hill
University of California-Davis BML (UC Davis-BML)
Co-Principal Investigator: Karina J. Nielsen
Sonoma State University
Co-Principal Investigator: Ann D. Russell
University of California-Davis (UC Davis)
Co-Principal Investigator: Libe Washburn
University of California-Davis (UC Davis)
Project Coordinator: Kristen Milligan
Oregon State University (OSU)
Partnership for Interdisciplinary Studies of Coastal Oceans [PISCO]