Transformations of dissolved organic matter (DOM) in the deep ocean have profound impacts on the global carbon cycle due to the sequestration of carbon dioxide (CO2) away from the atmosphere. Although research has been conducted on the high molecular weight component of this material, the same cannot be said for low molecular weight DOM because the needed analytical techniques have not been available to determine its composition and reactivity.
In recent years, a research team at Woods Hole Oceanographic Institution has acquired the necessary analytical capability. As such, in this project, they will carry out the first systematic survey of deep ocean DOM in the western Atlantic Ocean to characterize the low molecular weight fraction of DOM in southward flowing North Atlantic Deep Water (NADW), northward flowing Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW). Using ultrahigh resolution mass spectrometry and multi-stage fragmentation coupled to liquid chromatography, the scientists will determine the spatial variability in the composition of DOM along the flow path of the water masses, as well as assess the source water, transport, and surface processes that contribute to temporal changes in DOM composition. These results will be augmented with structural elucidation and quantitative assays of unique marker compounds for each water mass. Results will provide important insights into the biogeochemical reactions that govern DOM dynamics in the deep ocean.
Principal Investigator: Elizabeth Kujawinski
Woods Hole Oceanographic Institution (WHOI)
Co-Principal Investigator: Krista Longnecker
Woods Hole Oceanographic Institution (WHOI)
BCO-DMO Data Manager: Shannon Rauch
Woods Hole Oceanographic Institution (WHOI BCO-DMO)
Ocean Carbon and Biogeochemistry [OCB]
Center for Chemical Currencies of a Microbial Planet [C-CoMP]