Project: Collaborative Research: Building a framework for the role of bacterial-derived chemical signals in mediating phytoplankton population dynamics

Acronym/Short Name:HHQSignals
Project Duration:2017-04 - 2020-03
Geolocation:Bergen, Norway

Description

NSF Award Abstract:
Bacteria and phytoplankton play a central role in the modification and flow of materials and nutrients through the marine environment. While it has been established that interactions between these two domains are complex, the mechanisms that underpin these interactions remain largely unknown. There is increasing recognition, however, that dissolved chemical cues govern these microbial interactions. This project focuses on establishing a mechanistic framework for how bacterially derived signaling molecules influence interactions between phytoplankton and bacteria. The quorum-sensing (QS) molecule, 2-heptyl-4-quinolone (HHQ) will be used as a model compound for these investigations. Previously published work suggests that exposure to very low levels of HHQ results in phytoplankton mortality. Gaining a mechanistic understanding of these ecologically important interactions will help to inform mathematical models for the accurate prediction of the cycling of material through the marine microbial loop. This work initiates a new, hybrid workshop-internship undergraduate research program in chemical ecology, with a focus

Bacteria and phytoplankton play a central role in the modification and flow of materials and nutrients through the marine environment. While it has been established that interactions between these two domains are complex, the mechanisms that underpin these interactions remain largely unknown. There is increasing recognition, however, that dissolved chemical cues govern these microbial interactions. This project focuses on establishing a mechanistic framework for how bacterially derived signaling molecules influence interactions between phytoplankton and bacteria. The quorum-sensing (QS) molecule, 2-heptyl-4-quinolone (HHQ) will be used as a model compound for these investigations. Previously published work suggests that exposure to very low levels of HHQ results in phytoplankton mortality. Gaining a mechanistic understanding of these ecologically important interactions will help to inform mathematical models for the accurate prediction of the cycling of material through the marine microbial loop. This work initiates a new, hybrid workshop-internship undergraduate research program in chemical ecology, with a focus into bacteria-phytoplankton interactions. Undergraduate students participate in an intense summer learning experience where research and field-based exercises are supplemented with short-lecture based modules. Students return to their home institutions and work closely with the PIs to conduct interdisciplinary research relating to the aims and scope of the summer research. This research also provides training and career development to two graduate students and a postdoctoral scientist.

Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and microbial trophic structure in the ocean. The intricate relationships between these two domains of life are mediated via excreted molecules that facilitate communication and determine competitive outcomes. Despite their predicted importance, identifying these released compounds has remained a challenge. The PIs recently identified a bacterial QS molecule, HHQ, produced by globally distributed marine gamma-proteobacteria, which induces phytoplankton mortality. The PIs therefore hypothesize that bacteria QS signals are critical drivers of phytoplankton population dynamics and, ultimately, biogeochemical fluxes. This project investigates the timing and magnitude of HHQ production, and the physiological and transcriptomic responses of susceptible phytoplankton species to HHQ exposure, and quantifies the influence of HHQ on natural algal and bacterial assemblages. The work connects laboratory and field-based experiments to understand the governance of chemical signaling on marine microbial interactions, and has the potential to yield broadly applicable insights into how microbial interactions influence biogeochemical fluxes in the marine environment.



People

Lead Principal Investigator: Elizabeth Harvey
Skidaway Institute of Oceanography (SkIO)

Principal Investigator: David Rowley
University of Rhode Island (URI)

Principal Investigator: Kristen E. Whalen
Haverford College

Contact: Elizabeth Harvey
Skidaway Institute of Oceanography (SkIO)


Data Management Plan

DMP_Harvey_Rowley_Whalen_OCE-1657808,1657818,1657898.pdf (78.07 KB)
07/26/2017